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Abstract. Recently we have shown that a one-parameter scaling, Tcoh, describes the physical behavior
of several heavy fermions in a region of their phase diagram. In this paper we fully characterize this
region, obtaining the uniform susceptibility, the resistivity and the specific heat in terms of the coherence
temperature Tcoh. This allows for an explicit evaluation of the Wilson and the Kadowaki-Woods ratios in
this regime. These quantities turn out to be independent of the distance |δ| to the quantum critical point
(QCP). The theory of the one-parameter scaling corresponds to a local interacting model. Although spatial
correlations are irrelevant in this case, time fluctuations are critically correlated as a consequence of the
quantum character of the transition.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.30.Mb Valence fluctuation,
Kondo lattice, and heavy-fermion phenomena – 71.10.Hf Non-Fermi-liquid ground states, electron phase
diagrams and phase transitions in model systems

1 Introduction

Most of the physical properties of heavy fermions can be
attributed to the proximity of these systems to a quantum
critical point (QCP) [1,2]. This zero temperature critical
point arises as a competition between Kondo effect and
magnetic order induced by RKKY coupling. In the mag-
netically disordered side of the phase diagram a scaling
approach reveals the existence of a new characteristic tem-
perature, the coherence temperature Tcoh ∝ |δ|νz, below
which the system exhibits Fermi liquid (FL) behavior [3].
In this relation, |δ| = |JQ − Jc

Q| measures the distance to
the T = 0 critical point and ν and z are respectively the
correlation length and dynamic critical exponents. JQ is
the coupling between the local moments and Jc

Q its criti-
cal value, at which the magnetic instability, characterized
by the wavevector Q occurs. At the QCP, i.e., |δ| = 0, the
system does not cross the coherence line and consequently
exhibits non-Fermi liquid behavior down to T = 0 [1].

Recently, we have shown that the heavy fermion sys-
tems CeRu2Si2, CeCu6, UPt3 and CeAl3 under pressure
(the latter for P ≥ 1.2 kbars), obey a one-parameter scal-
ing, i.e., C/T ∝ T−1

coh, χ0(T → 0) ∝ T−1
coh, AR ∝ T−2

coh
and hc ∝ Tcoh, where these quantities are measured in
the Fermi liquid regime for T � Tcoh [1]. The pressure
dependence of the coherence temperature, Tcoh, then de-
termines the pressure variation of the coefficient of the
linear term of the specific heat, of the uniform suscepti-
bility, the coefficient of the T 2 term of the resistivity and
of the characteristic pseudo-metamagnetic field, respec-
tively. In this paper we use the spin-fluctuation theory of

a e-mail: mucio@if.uff.br

a nearly anti-ferromagnetic metal [5,6] to fully character-
ize this regime and calculate the specific heat, the uniform
susceptibility and the resistivity in the region of the phase
diagram where this type of one-parameter scaling is ob-
served. This allows for an explicit evaluation of the Wilson
ratio and the Kadowaki-Woods ratio [7,8] between the co-
efficient of the T 2 term in the resistivity and that of the
linear term of the specific heat.

It is important to emphasize that, although the spin
fluctuation model that we use to describe the physical
behavior associated with the antiferromagnetic quantum
critical point is a Gaussian theory, this theory gives the
exact description of the quantum critical behavior [1], i.e.,
the Gaussian exponents associated with the QCP are ex-
act. The reason is that for the problem considered here,
the effective dimension deff = d + z. Since the Euclidean
dimension d = 3 and the dynamic exponent z = 2, for an-
tiferromagnetic fluctuations, deff > dc = 4, the upper crit-
ical dimension for the magnetic transition. Consequently
the Gaussian fixed point yields the correct zero tempera-
ture critical exponents [9].

2 Specific heat

We start from the expression for the free energy given
by the spin-fluctuation theory of a nearly antiferromag-
netic electronic system [5,6]. We use the notation of ref-
erence [6],

fsf = − 3
π

∑
q

T

∫ ∞
0

dλ
eλ − 1

tan−1

(
λT

Γq

)
(1)
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where

Γq = ΓL(1− JQχL) + ΓLχLAq
2.

ΓL and χL are local parameters defined through the local
dynamical susceptibility, χL(ω) = χL/(1− iω/ΓL) [6]. JQ ,
as before, is the q-dependent exchange coupling between
f -moments and A is the stiffness of the lifetime of the spin
fluctuations defined by the small wavevector expansion
of the magnetic coupling close to the wavevector Q, i.e.,
JQ − JQ+q = Aq2 + · · · . Then, Γq can be rewritten as,
Γq = ΓLχLAξ

−2[1 + q2ξ2], where the correlation length,
ξ =

(
A/|JQ − Jc

Q|
)1/2 =

√
A/|δ| diverges at the critical

value of the coupling, Jc
Q = χ−1

L , with the Gaussian critical
exponent, ν = 1/2. Consequently, we have for the specific
heat C/T = −∂

2fsf
∂T 2 ,

C/T =
∂2

∂T 2

{
3
π

∑
q

T

∫ ∞
0

dλ

eλ − 1
tan−1

×
(

λTξz

ΓLχLA(1 + q2ξ2)

)}
(2)

where we have identified the dynamic critical expo-
nent, z = 2, typical of antiferromagnetic spin fluctua-
tions [5]. The argument of the tan−1 can be written as,
(λTξz/AΓLχL)[1− q2ξ2/(1 + q2ξ2)]. The term in brackets
[...] is always ≤ 1, furthermore the exponential cuts off
the contribution for the integral from large values of λ,
consequently for (Tξz/ΓLχLA) � 1, we can expand the
tan−1 for small values of its arguments. It is easily seen
that this condition can be written as, T � Tcoh, where
the coherence temperature,

kBTcoh = ΓLχL|JQ − Jc
Q| = ΓLχL|δ|νz

in agreement with the scaling theory, since νz = 1 (ν =
1/2 and z = 2) [1]. Notice that Tcoh is independent of A.

Then we have for T � Tcoh,

C/T =
∂2

∂T 2

[
3T 2

πTcoh

∫ ∞
0

dλλ
eλ − 1

∑
q

1
1 + q2ξ2

]
· (3)

This equation clarifies the physical meaning of the coher-
ence temperature. It is the characteristic temperature, be-
low which, the free energy is quadratic in temperature and
consequently the system exhibits Fermi liquid behavior.
Changing the

∑
q into an integral we find (d = 3),

C/T =
∂2

∂T 2

[
πT 2ξ(z−d)

2ΓLχLA

4πV
(2π)3

∫ qcξ

0

dyy2

1 + y2

]
(4)

which yields

C/T =
πξ(z−d)

ΓLχLA

4πV
(2π)3

qcξ

(
1− tan−1 qcξ

qcξ

)
· (5)

In the critical regime, qcξ � 1, we obtain the result of ref-
erence [6], i.e., C/T = 6π2Nk2

B/Aq
2
c , a non-universal, cut-

off dependent value. In the opposite, sub-critical regime,
i.e., for, qcξ � 1, since tan−1 y ≈ y − y3/3 + y5/5 + · · ·
for small y, we get [1]

C/T =
πξ(z−d)

ΓLχLA

4πV
(2π)3

qcξ

[
1
3

(qcξ)2 − 1
5

(qcξ)4 + · · ·
]
·

(6)

The first term is independent of A and yields,

C/T =
πNk2

B

ΓLχL

1
|JQ − Jc

Q|
=
πNkB

Tcoh
· (7)

In fact this could have been obtained directly, from equa-
tion (3), neglecting the q-dependence of Γq and with∑

q → N [10]. In the equation above the correct units
have been restored. In principle, one may think naively
that this limit is not relevant, since the condition, qcξ � 1,
can only be satisfied far away from the quantum crit-
ical point. Note however, that this may be written as,
qc
√
A/|δ| � 1, which can be satisfied, either because the

system is far away from the quantum critical point, i.e., |δ|
is large, or because A is small. Rewriting this condition
as qc/

√
|δ| � 1/

√
A, we notice that, when A→ 0, it holds

arbitrarily close to the QCP, i.e., for δ arbitrarily small.
Table 1 gives values for the coherence temperature for

some heavy fermion systems, which obey one parameter
scaling, obtained from equation (7) and the measured spe-
cific heat.

3 Susceptibility and Wilson ratio

The zero temperature uniform susceptibility of the nearly
antiferromagnetic system in the limit qcξ � 1 can be di-
rectly obtained from the magnetic field (h) dependent,
T = 0, q-independent free energy [1,12],

fL
sf = −3N

2π

∫ ωc

0

dω tan−1

[
ω + µh

ΓLχL|JQ − Jc
Q|

]
· (8)

Notice that the magnetic field in this expression scales
as (h/hc) where the characteristic field, hc ∝ Tcoh. The
uniform susceptibility χ0 is given by,

χ0 = −
(
∂2fL

sf

∂h2

)
h=0

=
3Nµ2

2πΓLχL

1
|JQ − Jc

Q|
=

3Nµ2

2πkBTcoh

(9)

where the limit ωc → ∞ has been taken. Note from the
general expression for the uniform susceptibility [6], χ−1 =
χ−1
Q +Aq2

c , where χQ is the staggered susceptibility, that
in the limit, qcξ � 1, χ = χQ = χ0. Then the staggered
and uniform susceptibilities coincide in this limit, being
equally enhanced.
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Table 1. Parameters for some heavy fermion systems. All experimental data are taken from [11] and references therein.
(∗) obtained from equation (7) for the specific heat. (∗∗) along the c-axis. (∗∗∗) in the basal plane. For the transport parameter,
the average number of conduction electrons per atom, n = 1.

CeRu2Si2 CeCu6 UPt3

µ(µB) 2.5 2.5 3.0

v
1/3
0 (×10−8 cm) 4.4 4.7 4.1

Tcoh (K)∗ 67 15 58

χ/µ2 (×1035 erg−1cm
−3

) 5.8 7.9 2.5
C/T

π2k2
B

(×1035 erg−1cm
−3

) 3.9 13.0 5.6

χ/µ2

C/Tπ2k2
B

1.46 0.59 0.44

AR (µΩ cm K−2) 0.40 14.4 0.7∗∗–1.6∗∗∗

AR
(C/T )2

 
×10−5µΩ cm

�
mol K

mJ

�2
!

0.27 0.51 0.34∗∗–0.79∗∗∗

(ΓLχL)(J/W )2 0.40 0.71 0.54∗∗–1.25∗∗∗

(J/W ) 0.47 0.63 0.39∗∗–0.59∗∗∗

The Wilson ratio (WR) is given by

χ0/µ
2

C/π2k2
BT

=
3
2

= 1.5

which turns out to be a universal number since the depen-
dence on the distance to the critical point, |JQ−Jc

Q| and on
the dimensionless quantity ΓLχL cancels out. We empha-
size that the above result for χ0 is valid in the regime,
qcξ � 1, that is, if the system satisfies the condition,
qc/
√
|JQ − Jc

Q| � 1/
√
A. The experimental value for the

WR in CeRu2Si2, given in Table 1, is in fair agreement
with the theory. The same is not true for the other sys-
tems. Since there is a reasonable spread on the experi-
mental data for different samples of these materials, at
this point, the best indication that they are in the sub-
critical regime is the fact that they obey one-parameter
scaling.

4 Resistivity and Kadowaki-Woods ratio

The resistivity due to spin fluctuations in the regime
qcξ � 1 is given by [1,13]

ρ = ρ0
1
T

∫ ∞
0

dω
ω=mχQ(ω)

(eβω − 1)(1− e−βω)
(10)

where

=mχQ(ω) = χs
Q

ωξzL
1 + (ωξzL)2

(11)

with

χs
Q =

1
|JQ − Jc

Q|

and

ξzL =
χs
Q

ΓLχL

The quantity ρ0 is given by,

ρ0 =
(
J

W

)2
mc

Nce2τFc
(N/Nc)

where J is the coupling constant per unit cell between
localized and conduction electrons. W , mc and Nc are
the bandwidth, the mass and the number of conduction
electrons per unit volume with Fermi momentum kFc, such
that, ~τFc

−1 = ~2k2
Fc/2mc and N is the number of atoms

per unit volume.
Using the definitions above, we can rewrite the spin-

fluctuation resistivity as, ρ = ρ0ΓLχLR(T̃ ) , where

R(T̃ ) =
1
T̃

∫ ∞
0

dω̃
1

(eω̃/T̃ − 1)(1− e−ω̃/T̃ )
ω̃2

1 + ω̃2
(12)

with ω̃ = ωξzL and T̃ = TξzL. For, T � Tcoh =

(ΓLχL/kB)|JQ−Jc
Q|, we have, R(T � Tcoh) ≈ π2

3

(
T
Tcoh

)2

and finally,

ρ(T � Tcoh) = ρ0ΓLχL
π2

3

(
T

Tcoh

)2

= ART
2 (13)

where

AR =
ρ0π

2

3
k2

B

ΓLχL

1
|JQ − Jc

Q|2
·

Notice that, the same coherence temperature, Tcoh, ap-
pears in the transport properties. In this case, it is the
characteristic temperature below which the resistivity
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varies quadratically with temperature, as appropriate to
a FL and that sets the scale for this contribution. Note
that there are two characteristic time scales in the prob-
lem considered here, namely ξz and ξzL. While the former
vanishes in the local limit the latter may still diverge.

The Kadowaki-Woods ratio [7], AR/(C/T )2 is given
by,

AR
(C/T )2

=
ρ0ΓLχL

3(NkB)2
(14)

which depends on the local parameters, ΓLχL, conse-
quently on the nature of the magnetic ion (4f , 5f or d,
for example), but not on the distance to the critical point,
|JQ − Jc

Q|. From the equation above and the expression

for ρ0 we obtain, (ΓLχL)
[
J
nW

]2
= 6.55×10−3

n2/3v
1/3
0

AR
(C/T )2 , with,

n = (Nc/N), the average number of conduction electrons
per atom and v1/3

0 , the average atomic radius given in cm.
The values of (ΓLχL)(J/W )2 obtained from the experi-
mental results and with n = 1, are given in Table 1. If
we use (ΓLχL) = 1/2π, the value for S = 1/2 [6], we get,
(J/W ) = 1.6, 1.8 and 2.1 for CeRu2Si2, UPt3 and CeCu6,
respectively, which are too large. On the other hand, ex-
tending the Korringa relation [6] for arbitrary spin, i.e.,
ΓLχL = 2(µ/gJµB)2/3π, where µ is the experimental mag-
netic moment (in µB) given in Table 1, we get the values
for (J/W ) also shown in this table (n = 1). These values
are in agreement with those expected for non-magnetic
heavy fermions [14], although the value of (J/W )c sepa-
rating the magnetic from the Fermi liquid ground states in
heavy fermions is still unknown. Takimoto and Moriya [15]
have also calculated the Kadowaki-Woods ratio for heavy
fermions and obtained that, not too close to the QCP, it
is nearly independent of |δ|.

Notice that for T � Tcoh, R(T ) ≈ πT
2Tcoh

and the resis-
tivity varies linearly with temperature. It is given by,

ρ(T � Tcoh) = ρ0ΓLχL
π

2
T

Tcoh
·

We point out that in the q-dependent, critical regime,
i.e., for qcξ � 1, also ρ = AMR T

2, at low temperatures,
but the coefficient AMR ∝ |JQ − Jc

Q|−1/2 [6] and conse-
quently does not scale as T−2

coh, in disagreement with the
experimental results in the heavy fermion systems inves-
tigated here [1]. Also in the critical regime, the thermal
mass, C/T = 6π2Nk2

B/Aq
2
c [6], as shown before, and the

uniform susceptibility, χ = Nµ2/Aq2
c [6] both saturate

at non-universal, cut-off dependent values [6], and do not
scale as observed experimentally. In this critical regime
these quantities are controlled by the stiffness A. On the
other hand, in the local limit, qcξ � 1, the relevant Fermi
liquid parameters are universal since they are independent
of the cut-off qc and the stiffness A. They are determined
by the coherence temperature (Eqs. (7, 9, 12)), essentially
by the distance of the system to the QCP.

It should be clear by now that the spin fluctuation
theory of nearly antiferromagnetic systems, in the sub-
critical regime qcξ � 1, gives rise to the one-parameter

J/W  (1/qcξ)

Sub-critical or
 local regime
    q

c
ξ<<1

Critical Regime ( q c ξ  >> 1 )

QCP

Antiferromagnet

Non-Fermi Liquid
Trajectory

Coherence Line
      Tcoh

Neel Line

Fermi Liquid

(1/q
c
ξ)=1

T/W

Fig. 1. Phase diagram of heavy fermions. The quantum critical
point is located at (1/qcξ) = 0. Below the coherence line, Tcoh

the system behaves as a Fermi liquid. The line (1/qcξ) = 1
separates the true critical regime, (1/qcξ)� 1, from the local
regime where one-parameter scaling is observed. The crossover
along this line is smooth and can be seen as a dimensional
crossover from d = 0, the local regime, to d = 3 (see text).
The materials investigated here are to the right of the line
(1/qcξ) = 1.

scaling observed in the heavy fermions discussed here. We
have obtained, C/T ∝ T−1

coh, χ0 ∝ T−1
coh, AR ∝ T−2

coh and
hc ∝ Tcoh, as found experimentally in the pressure exper-
iments. The heavy fermions, CeRu2Si2, CeCu6, UPt3 and
CeAl3 (P > 1.2 kbars) are then close, but not too close, to
the QCP such that they satisfy the condition qcξ � 1 or
qc/
√
|δ| � 1/

√
A. In the phase diagram of Figure 1, they

are close but to the right of the line (qcξ)−1 = 1, shown
in this figure. Note that pressure used in the experiments
drives these systems further away to the right of this line
where the results obtained here are valid.

5 Conclusion

We have shown that the linear term of the specific heat,
the uniform susceptibility and the coefficient of the T 2

term of the resistivity of a nearly antiferromagnetic metal-
lic system in the Fermi liquid regime, for qcξ � 1, can be
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written in terms of the coherence temperature. The con-
dition, qcξ � 1, or qc (A/|δ|)1/2 � 1, does not imply that
the system is far away from the critical point since it can
be satisfied for arbitrarily small |δ| = |JQ − Jc

Q|, for A
sufficiently small.

The spin fluctuation theory in the sub-critical regime
qcξ � 1 corresponds to a local interacting model as the
correlation length may become smaller than the distance
among spins. Formally, this regime is equivalent to a prob-
lem in Euclidean dimension d = 0, consistent with the
local character of the model in this limit, but with effec-
tive dimensionality deff = z = 2 [4]. In the local model
the exponent α, defined through fL

sf ∝ |δ|2−α for δ → 0,
takes the value α = 1 as can be seen from equation (8)
with h = 0. From the divergence of the characteristic
time τL ∝ ξzL ∝ |δ|−1 in equation (11), which yields
νz = 1, we get that the quantum hyperscaling relation [3]
2 − α = ν(d + z) is indeed satisfied for d = 0. In spite
that spatial correlations are irrelevant in this regime, time
fluctuations are critically correlated due to the quantum
character of the transition.

In the regime qcξ < 1, the system obeys a one-
parameter scaling, i.e., C/T ∝ T−1

coh, χ0 ∝ T−1
coh, AR ∝

T−2
coh, hc = Tcoh, with Tcoh ∝ ξ−z, as we have shown. We

can conclude that the heavy fermion systems CeRu2Si2,
CeCu6 and UPt3, for P ≥ 0 and CeAl3, for P > 1.2 kbars,
belong to a region of Doniach’s phase diagram where
the condition, qcξ < 1, is satisfied as evidenced by the
one-scaling parameter observed in these materials [1,16].
These systems are to the right of the line (qcξ)−1 = 1, in
the phase diagram of Figure 1.

As the quantum critical point is further approached,
qcξ → ∞ and the full q-dependence of the dynamic sus-
ceptibility must be taken into account. This critical regime
has been described by Takimoto and Moriya [6], but it
clearly does not yield the one-parameter scaling obtained
in the pressure experiments on the systems above.

Eventually for |δ| = 0, the coherence temperature van-
ishes and the FL regime is never reached. The thermo-
dynamic properties in this non-Fermi liquid regime have
been obtained by Moriya [6], Millis [9] and in reference [1],
for the case the antiferromagnetic transitions at T > 0 are
described by non-Gaussian exponents. In fact, although
the spin-fluctuation theory gives the exact exponents of
the quantum critical point, this is not the case for the fi-
nite temperature antiferromagnetic transitions which oc-
cur in the region of the Kondo lattice phase diagram for
(J/W ) < (J/W )c, or JQ < Jc

Q.
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Cientifico e Tecnologico for partial financial support.
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